MEDIAN AND ALTITUDE

LEARNING GOALS

Students will:

- Learn how to find the altitude of a triangle.

REVIEW: MEDIAN

EXAMPLE 1: DETERMINE A GEOMETRIC PROPERTY ALGEBRAICALLY
The vertices of triangle $A B C$ are $A(5,5), B(-3,-1)$, and $C(1,-3)$. Determine whether triangle $A B C$ is a right triangle.

EXAMPLE 2: MEDIAN TO HYPOTENUSE
Show that the median from the right angle of the triangle in Example 2 , is half as long as the hypotenuse.

HOMEFUN ©
Pg. 90-91 Q2-6, 17

The line that connects a vertex to the opposite and intersects at 90°.

EXAMPLE 3: AREA OF A TRIANGLE
Show that the altitude from vertex A of $\triangle A B C$ can be used to find the area of the triangle.
(1)

$$
\begin{aligned}
M_{B C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{6-(-4)}{3-2} \\
& =10
\end{aligned}
$$

(2)

$$
m_{A D}=-\frac{1}{m_{B C}}=\frac{-1}{10}
$$

(3)

$$
\begin{equation*}
y=10 x+b \tag{BC}
\end{equation*}
$$

Sub $B(2,-4)$ into $(B C)$

$$
\begin{aligned}
-4 & =10(2)+b \\
b & =-24
\end{aligned}
$$

(4) $y=\frac{-1}{10} x+b \quad(A D)$

Sub $A(-2,4)$ into $(A D)$

$$
4=-\frac{1}{10}(-2)+b \quad b=4-\frac{1}{5}=\frac{19}{5}
$$

HOMEFUN ©
Pg 90-91 Q18, 21, 27
$y=10 x-24$ (1) Sub (1) into (2)

$$
\begin{array}{ll}
y=\frac{-1}{10} x+\frac{19}{5}(2) & 10 x-24=\frac{-1}{10} x+\frac{19}{5} \\
10 x+\frac{1}{10} x=\frac{19}{5}+24 \\
& \frac{100}{10} x+\frac{1}{10} x=\frac{19}{5}+\frac{120}{5}
\end{array}
$$

Sub (3) into (1)

$$
\begin{aligned}
& y=10\left(\frac{278}{101}\right)-24 \\
& y=\frac{356}{101}
\end{aligned}
$$

$$
D\left(\frac{278}{101}, \frac{356}{101}\right)
$$

$$
\begin{aligned}
& \left(\frac{101}{10} x=\frac{139}{5}\right) \times 10 \\
& \left(101 x=\frac{1390}{5}\right) \div 101 \\
& x=\frac{1390}{5} \times \frac{1}{101} \\
& x=\frac{1390}{505}=\frac{278}{101}
\end{aligned}
$$

$$
\begin{array}{ll}
D_{A D}=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \quad A_{\Delta A B C} & =\frac{1}{2} b h \\
D_{B C}=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} & =\frac{1}{2} D_{A D} D_{B C}
\end{array}
$$

